(nteD Intel® Math Kernel
Library for Deep

Neural Networks
(Intel® MKL-DNN)

Deep Learning Software Stack for Intel® Processors

™ CMN"i'K) . JEOFCh Deep learning and Al ecosystem includes edge and datacenter applications.
UPENVINO TUUI_KI i * Open source frameworks (TensorFlow*, MXNet*, CNTK*, PaddlePaddle*)
Chainer Caffe * Intel deep learning products (Neon™ framework, BigDL, OpenVINO™ toolkit)

Big I l- theano * In-house user applications

P Y T 6 R C H Intel MKL and Intel® MKL-DNN optimize deep learning applications for Intel processors
+

dm/C O Caffe? (TensorFlow*, MXNet*, PaddlePaddle*, CNTK*)

* Through Intel optimized forks (Caffe*, Torch*, Theano*)

mxnet Tensor * By partnering to enable proprietary solutions

Intel MKL Intel® MKL-DNN

Intel Processors

* Through collaboration with framework maintainers to upstream changes

Intel® Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN) is an open
source performance library for deep learning applications (available at
https://github.com/intel/mkl-dnn)

* Fast open source implementations for wide range of DNN functions

* Early access to new and experimental functionality

* Open for community contributions

Intel® Math Kernel Library (Intel® MKL) is a proprietary performance library for wide
range of math and science applications

* Distribution: Intel Registration Center, package repositories (apt, yum, conda, pip)

*QOther names and brands may be claimed as the property of others intel" I)

https://github.com/intel/mkl-dnn

TensorFlow* with Intel MKL/Intel® MKL-DNN

Use Intel Distribution for Python*

= Uses Intel MKL for many NumPy operations thus supports MKL_VERBOSE=1

= Available via Conda, or YUM and APT package managers

Use pre-built TensorFlow™* wheels or build TensorFlow* with "bazel build --config=mkI

= Building from source required for integration with Intel Vtune™ Amplifier

= Follow the CPU optimization advices including setting affinity and # of intra- and inter- ops threads

= More Intel® MKL-DNN-related optimizations are slated for the next version: Use the latest TensorFlow* master if
possible

*QOther names and brands may be claimed as the property of others intel' I 3

https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/articles/using-intel-distribution-for-python-with-anaconda
https://software.intel.com/en-us/articles/installing-intel-free-libs-and-python-yum-repo
https://software.intel.com/en-us/articles/installing-intel-free-libs-and-python-apt-repo
https://github.com/tensorflow/tensorflow
https://www.tensorflow.org/performance/performance_guide

Intel® MKL-DNN scope

MKL-DNN Scope of Operations
_________________________ I m CIass

|
1
| .
: MKL-DNN Inference Operations : ° (De-)Convqution Compute
AN AN *N * Inner Product intensive

* Vanilla RNN, LSTM, GRU operations
* Pooling AVG/MAX Memory
* Batch Normalization bandwidth

MKL-DNN Training Operations

I
I
I
I
I
& wrkspc memory ! * Local Response Normalization limited
update wy update w, : * Activations operations
. -ound
\! | ! ! s (ReLU, Tanh, Softmax, ...)
X . Z.) 2 | y\ — £ > Sum
— > w;x J > Wy - Z T L=loss_fxn(y) | error

: : —>

. |}

| | aw, | dw,— - * Reorder Data

- wrkspc | wrkspc | ! .

bV] | \ * Concatenation movement

: :

I w, (€ 22 2w, -z (€ = ! dl * Shuffle

: }

, :

@ |

Intel® MKL-DNN overview

Feaures primitves | Class

* Training (float32) and inference (float32, int8) * (De-)Convolution Compute
CNNs (1D, 20 and 3D), RNNs (plain, LSTM, GRU) * Inner Product intensive
u S , an , S aln, B . q
P * Vanilla RNN, LSTM, GRU operations
= Optimized for Intel processors
- * Pooling AVG/MAX Memory
Portability: * Batch Normalization bandwidth
* Compilers: Intel C++ compiler/Clang/GCC/MSVC* * Local Response Normalization limited
OSes: Linuc* Windows*. Mac* * Activations operations
€s: Hnux, AVindows ™, Vlac (ReLU, Tanh, Softmax, ...)
* Threading: OpenMP*, TBB * Sum
® .
Frameworks that use Intel® MKL-DNN: s Reorder Data
IntelCaffe, TensorFlow*, MxNet*, PaddlePaddle* * Concatenation movement
* Shuffle

CNTK*, OpenVino, DeepBench*

*QOther names and brands may be claimed as the property of others intel' I 5

Intel® MKL-DNN philosophy

Intel® MKL-DNN Overview

Descriptor: a structure describing memory and computation properties

Primitive: a handle to a particular compute operation

= Examples: Convolution, ReLU, Batch Normalization, etc.

= Three key operations on primitives: create, execute and destroy

= Separate create and destroy steps help amortize setup costs (memory allocation, code generation, etc.) across multiple calls to execute
Memory: a handle to data

Stream: a handle to an execution context

Engine: a handle to an execution device

ENGINE

Input Operation Operation Operation Output

memory (mem) l Primitive (op_prim) . Primitive (op_prim) . Primitive (op_prim) I Memory (mem)

Weights
Memory (mem)

Intel® MKL-DNN Detailed Flow

Convolution + ReLU Example

O
=
n : :
O engine | engine
C type id
%D d d - Compare before reorder
memory_desc memory_desc -
Q (fmt=user) (fmt=any) g CPriiEs
c T engine .
o0 R Data in blocked format
C 3 o ~
G-) B = ~
e ™ v
reorder - conv
prim_desc | prim_desc

reorder
primitive

relu
primitive

reorder
primitive

conv
primitive

engine aware

weights
memory

Intel® MKL-DNN Object Snapshots

Create engine and associated stream

Create memory object for Src, Dst, & Weight data Build inference operation primitive
Inputs Inputs
Dims Srcmd
i Dst_md
Data Format semonyibeselpIeRlin) s_’m " Operation Descriptor
Data Type Wei_md
T— (op_d)
rop_kind
Op Args*

Queries

: .. . pd.src_desc()
Engine Op Primitive Descriptor o
:Op il i (OP_pd) pd.weights_descr()

Query

Memory (mem)

Operation Primitive

1
!
I
!
!
|
!
!
!
I
I
!
I
!
1
Data Handle* I
I
I

Query mem and op_pd, reorder if needed:
reorder(user_mem, op_mem).execute(stream, user_mem, op_mem)

Operation.execute (stream, {{MKLDNN_ARG_SRC, src_op_mem},{MKLDNN_ARG_DST, dst_ op_mem}})

Key performance
considerations on Intel

Processors

Memory layouts

Most popular memory layouts for image recognition are
nhwc and nchw

= Challenging for Intel processors either for vectorization or for memory
accesses (cache thrashing)

Intel® MKL-DNN convolutions use blocked layouts
= Example: nhwc with channels blocked by 16 — nChw16c
= Convolutions define which layouts are to be used by other primitives

= Optimized frameworks track memory layouts and perform reorders
only when necessary

Layout propagation: the steps to create a primitive

1. Create memory descriptors
= These describe the shapes and memory layouts of the tensors the primitive will compute on

= Use the layout ‘any’ as much as possible for every input/output/weights if supported (e.g. convolution or
RNN). Otherwise, use the same layout as the previous layer output.

2. Create primitive descriptor and primitive

3. Create needed input reorders
= Query the primitive for the input/output/weight layout it expects

Ll Create the needed memory buffers and reorder primitives to accordingly reorder the data to the appropriate
layout

4. Engueue primitives and reorders in the stream queue for execution

Fusing computations

On Intel processors a high % of time is Conv+Sum+ReLU
typically spent in BW-limited ops

Conv Conv

= ~40% of ResNet-50, even higher for inference The FWKs are expected to be able to

The solution is to fuse BW-limited ops with detect fusion opportunities

convolutions or one with another to = |ntelCaffe already supports this

reduce the # of memory accesses o _ _
Major impact on implementation

= Conv+RelLU+Sum, BatchNorm+RelLU, etc
= All the impls. must be made aware of the

= Done for inference, WIP for training fusion to get max performance

= Intel® MKL-DNN team is looking for scalable
solutions to this problem

Low-precision inference

Proven only for certain CNNs by FP32 model F32 model

IntelCaffe at the moment

A trained float32 model quantized

to int8 INT8 model
: : . FP32
Some operations still runin FP32 FP32 INT8 INTS

float32 to preserve accuracy

Primitive attributes

Fusing layers through post-ops
1. Create a post_ops structure
2. Append the layers to the post-ops structure (currently supports sum and elementwise operations)

3. Pass the post-op structure to the primitive descriptor creation through attributes

Quantized models support through attributes (more details)

1. Set the scaling factors and rounding mode in an attribute structure

2. Pass the attribute structure to the primitive descriptor creation

https://intel.github.io/mkl-dnn/ex_int8_simplenet.html

Intel® MKL-DNN integration levels

Intel® MKL-DNN is designed for best
performance.

However, topology level performance will
depend on Intel® MKL-DNN integration.

* Naive integration will have reorder
overheads.

* Better integration will propagate
layouts to reduce reorders.

* Best integration will fuse memory
bound layers with compute intensive
ones or with each other.

BDUELU.IO}Jad 191199

Example: inference flow

~Original code

~Naive integration

~Layout propagation

Layer fusion

\

Transform weights to integrate
BN (offline
_ e J

Intel” MKL-DNN: How To Get?

Build from source using walkthrough = https://software.intel.com/en-us/articles/intel-mkl-dnn-part-1-library-overview-and-installation

Download and Build the Source Code

Clone the Intel MKL-DNN library from the GitHub repository by opening a terminal and typing the
following command:

git clone https://github.com/0lorg/mkl-dnn.g
Validating the Build

To validate your build, execute the following command from the mkl/-dnn/build directory:

2]
o
w
a
ot
g
w
ot

This step executes a series of unit tests to validate the build. All of these tests should indicate Passed,
and the processing time as shown in Figure 3

bbrown@bbrown-PC: ~/mkl-dnn/build
bbrown@bbrown-PC:~/mkl-dnn/buildS make test

Test project fhome/bbrown/mkl-dnn/build
Start 1: simple-net-c
Test # simple-net-c
Start simple-net-cpp
Test #2: simple-net-cpp Passed
Start 3: api-c
Test #3:
Start 4: _symbols-c

Test # est_c_symbols-c Passed
Start test_sum
Test #5: test_sum Passed

https://software.intel.com/en-us/articles/intel-mkl-dnn-part-1-library-overview-and-installation

Intel® MKL-DNN: How to know if you have it in
framework? = MKLDNN_VERBOSE

export MKLDNN VERBOSE=1

./program.exe

mkldnn verbose,info,Intel (R) MKL-DNN v0.18.0 (Git Hash 4cfedbbf82£f1339d7c8c7f622fda02dc00ec8ads8),
Intel (R) Advanced Vector Extensions 2 (Intel (R) AVX2)

mkldnn verbose,exec,reorder,jit:uni,undef,in:£32 nchw out:£32 nChw8c,num:1,2x16x7x7,0.529053
mkldnn:verbose,exec,reorder,jit:uni,undef,in:f32:oihw out:f32:OIhw8i8o,num:l,16xl6x5x5,0.98999
mkldnn verbose,exec,reorder,jit:uni,undef,in:£32 nchw out:£32 nChw8c,num:1,2x16x7x7,0.453125
mkldnn verbose, exec,reorder,simple:any,undef,in:£32 x out:£32 x,num:1,16,0.388916
mkldnn:verbose,exec,convolution,jit:avx2,forwarditrgining,fsrg:nChWSC fwei:0Ihw8i80o fbia:x
fdst:nChw8c,alg:convolution direct,mb2 icl6ocl6 ih70h7kh5shldhOph2 iw7ow7kwSswldwOpw2,0.0241699
mkldnniverbose,exec,reorderjjit:uni,unaef,in:f3§7nchw80 out:f327ncﬁw,num:1,2x16x7x7,O.46997l

Intel® MKL-DNN verbose mode overview

Simple yet powerful analysis tool: Output includes:

= The marker, state and primitive kind
= Similar to Intel MKL verbose

Implementation details (e.g. jit:avx2)

= Enabled via environment variable or = Primitive parameters
function call = Creation or execution time (in ms)
= Qutput is in CSV format Example below (details here)

$ # MKLDNN_VERBOSE is unset
$./examples/simple-net-c
passed

$ export MKLDNN_VERBOSE=1 # report only execution parameters and runtime
$./examples/simple-net-c # | grep "mkldnn_verbose"

mkldnn_verbose,exec,reorder, sundef,in:f32 oihw out:f32 Ohwi80,num:1,96x3x11x11,12.2249
mkldnn_verbose,exec,eltwise, ,forward_training,fdata:nChw8c,alg:eltwise relu,mb8ic96ih55iw55,0.437988
mkldnn_verbose,exec,lrn, ,forward_training,fdata:nChw8c,alg:1rn_across_channels,mb8ic96ih55iw55,1.70093
mkldnn_verbose,exec,reorder, sundef,in:¥32 nChw8c out:f32_nchw,num:1,8x96x27x27,0.924805

passed

https://software.intel.com/en-us/articles/verbose-mode-supported-in-intel-mkl-112
https://intel.github.io/mkl-dnn/perf_profile.html

Performance gaps causes

Functional gaps: your hotspot is a commonly/widely used primitive and is not enabled
in Intel® MKL-DNN

Integration gaps: your hotspot uses Intel® MKL-DNN but runs much fasterin a
standalone benchmark (more details in the hands-on session)

Intel® MKL-DNN performance issue: your hotspot uses Intel® MKL-DNN but is very slow
given its parameters

In any of these cases, feel free to contact the Intel® MKL-DNN team through the Github*
page issues section.

*QOther names and brands may be claimed as the property of others intel" I 20

https://github.com/intel/mkl-dnn/issues

TensorFlow™ integration

Prototyping a TensorFlow™ model

= e B 8
upantew, | | upemu,,] Updatew,, :(uumb,‘
TensorFlow™* Core | : —
. . e Gradu;‘nts
1. Build a computational graph (a tf.Graph). B m
o_'/l’é;';ejt) @;ﬂ:‘\
@] Google’s definition: “A computational graph is a series of TensorFlow* dusemcbor -
operations arranged int.o a graph. Lo::;uyer
o Nodes(compute operations) & Edges (Tensors: ndarray) —_—
Relu Layer

i Edges
2. Run the computational graph (using a tf.Session).

Nodes

Data Flow graph Advantages

1. Parallelism
2. Distributed execution

22

(i@ Software

" © 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be

claimed as the property of others.
For more complete information about compiler optimizations, see our

https://software.intel.com/en-us/articles/optimization-notice

Intel-optimized TensorFlow™

Intel® MKL-DNN

Primitives for DNN domain

Library is open-source (hips/aithub.comintelmkidnn) and downloaded automatically when building TensorFlow™.

MKL-DNN accelerates AlexNet, VGG, GoogleNet, MXNet and ResNet neural networks
Optimizations introduced in TF:

Operator optimizations

Graph optimizations

System optimizations

Coming straight from MKL-DNN, out-of-the-box, no code changes required!!

" © 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be 23

claimed as the property of others. intel Software

For more complete information about compiler optimizations, see our

https://software.intel.com/en-us/articles/optimization-notice

Operator optimizations

Replace default (Eigen) kernels

by highly-optimized kernels Fowerd [Badwad |

(using Intel® MKL-DNN) Conv2D Conv2DGrad
Relu, TanH, ELU ReLUGrad, TanHGrad,
ELUGrad

Key optimizations: , ,

Direct batched convolution MaxPooling MaxPoolingGrad
* Inner product AvgPooling AvgPoolingGrad
. Poolingf méximum, minimum, averagfe ‘ T BatchNormGrad
* Normalization: local response normalization across

channels (LRN), batch normalization LRN LRNGrad
* Activation: rectified linear unit (ReLU) MatMul, Concat

* Data manipulation: multi-dimensional transposition
(conversion), split, concat, sum and scale.

" © 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be 24

(intel) software

https://software.intel.com/en-us/articles/optimization-notice

Graph optimizations: fusion

Conv2D

Conv2DWithBias

BiasAdd

Before Merge After Merge

" © 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be 25

claimed as the property of others. intel Software

For more complete information about compiler optimizations, see our

https://software.intel.com/en-us/articles/optimization-notice

Graph optimizations: fusion

Conv2D

Conv2DWithRelu

Before Merge After Merge

" © 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be 26

claimed as the property of others. intel Software

For more complete information about compiler optimizations, see our

https://software.intel.com/en-us/articles/optimization-notice

Graph optimizations: layout propogation

 What is layout?
* How do we represent N-D tensor as a 1-D array.

Better optimized for
some operations
VS.

Impacts performance during
weight updates

{N:2, R:5, C:5}

" © 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be 27

claimed as the property of others. intel Software
For more complete information about compiler optimizations, see our

https://software.intel.com/en-us/articles/optimization-notice

Graph optimizations: layout COnversion

* Converting to/from optimized layout
can be less expensive than operating
on un-optimized layout.

* All MKL-DNN operators use highly-
optimized layouts for TensorFlow*
tensors.

Initial Graph

" © 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other na

claimed as the property of others.
For more complete information about compiler optimizations, see our

mes and brands may be

Convert Convert

MkIConv2D

Convert

Convert

MkIReLU

Convert

After Layout Conversions

28

(intel) software

https://software.intel.com/en-us/articles/optimization-notice

Graph optimizations: layout propagation

Did you notice anything
wrong with previous graph?

Convert Convert

MkIConv2D

Problem: redundant

. Convert
conversions

MkIReLU

Convert

After Layout Conversion

Convert Convert

MkIConv2D

MkIReLU

Convert

After Layout Propagation

. © 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be

claimed as the property of others.
For more complete information about compiler optimizations, see our

29

intel Software

https://software.intel.com/en-us/articles/optimization-notice

System optimizations: load balancing

Convert Convert

TensorFlow™ graphs offer opportunities for parallel
execution. MkIConv2D

Threading model, Tune you MKL w/

1. inter_op_parallelism_threads = max MkIReLU
number of operators that can be executed
in parallel

2. intra_op_parallelism_threads = max
number of threads to use for executing an

operator
config = tf.ConfigProto ()
3. QMP_NUM_THREADS = MKL-DNN equivalent of config.intra op parallelism threads =
1ntra_°p_parallellsm_threads config. inter:op_parallelism:threads
. tf.Session(config=config)
More details: eviTon[*TMD RLOCKEDMES] = *1s
https://www.TensorFlow*.org/performance/perfor .environ["KMP_AFFINITY"] = "granularity=fine,compact,1,0"

.environ["KMP:sE'n'IN(;sn] - nQw

mance gUIde -environ["OMP NUM THREADS"] = “56"

. © 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be 30

claimed as the property of others. intel Software

For more complete information about compiler optimizations, see our

https://software.intel.com/en-us/articles/optimization-notice
https://www.tensorflow.org/performance/performance_guide

System optimizations: load balancing

Incorrect setting of threading model

parameters Can |ead to Over_ Or OMP: Error #34: System unable to
o . allocate necessary resources for
under-subscription, leading to poor OMP thread:
performance' OMP: System error #11: Resource
temporarily unavailable
OMP: Hint: Try decreasing the
Solution: value of OMP_NUM_THREADS.

= Set these parameters for your model
manually.

= Guidelines on TensorFlow* webpage

“ © 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be 31

claimed as the property of others. intelv Software
For more complete information about compiler optimizations, see our

https://software.intel.com/en-us/articles/optimization-notice

Key Takeaways

Key Takeaways

1. Application developers already benefit of Intel® MKL-DNN through integration in
popular frameworks

2. Framework developers can get better performance on Intel processors by integrating
Intel® MKL-DNN

3. There are different levels of integration, and depending on the level you will get
different performance

4. Profiling can help you identify performance gaps due to

Ll Integration not fully enabling Intel® MKL-DNN potential (more on that in the hands-on session).

" Performance sensitive function not enabled with Intel® MKL-DNN (make requests on Github*)

" Performance issue in Intel® MKL-DNN (raise the issue on Github*)

https://github.com/intel/mkl-dnn/issues
https://github.com/intel/mkl-dnn/issues)

Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more complete information visit
www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, Atom, OpenVINO, neon, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

BACKUP

Profiling ResNet50 Training

* Nearly 19X faster & 20X images processed/sec

$ python tf _cnn_benchmarks.py --device=cpu --mkl=True --data_format=NHWC \
--kmp_affinity=‘granularity=fine,noverbose,compact,1,0’ --kmp_blocktime=1 \
--kmp_settings=1 --num_warmup_batches=20 --batch_size=256 --num_batches=50 \
--model=resnet50 --num_intra_threads=56 --num_inter_threads=2 --forward_only=false \

--trace_file="tf_timeline_training_benchmark_latest.json'

! o= (ELE |2 EER—
ljob:localhost/replica:0/task:0/device:CPU:0 Compute (pid 1)
' Fus U U (VA T B N O 0 O O =1 N Y= N NI N N | =S - | TS | T
StOCk: 108’9 22ms Record || Save | Load | TF_timeline_training_benchmark json
Ly . o= L |'= L
> fiob] 3 images/ secC M (job:lucalhost’replica:Oltask:OIdevice:CPU:(T Compute (pid 1)
> Al
e Intel-optimized: 5,798 ms I
I!lame v Wall Duration ¥ Sgiftime ¥ 64 imageS/Sec
FusedBatchNormGrad @ 64,413.417ms p4,413.417 mg » fjob:
Conv2DBackproplnput @, 16,685.238 ms 6,685.233 m8 » Allocators (pid 0)
Conv2DBackpropFilter ~ & 14275945 ms 4,275.945
FusedBatchNorm @, 6,464.753ms |6,464.753 3398 items selected. Slices (3398)
g;’;"ég d QQ ?:32:':;; :11:_ ?32::;; y Iftime ¥ Average Wall Duration ¥ Occurrences ¥ Event(s
AddN & 833.324 ms 833.324 MkIConv2DBackpropFilter aQ 1,222.909 ms 1P22 909 ms 23.074ms 53 Outgoin
Add @ 357.768 ms 357.768 MkIConv2DBackproplnput aQ 957.020 ms 57.020 ms 18.404 ms 52 Outgoin
Relu @ 356.779 ms 356.779 MkIConv2D @ 869.760 ms 69.760 ms 16411 ms 53 Outgoin
mL"lf'a" h 2;; 3;: m 2;3;: MkIFusedBatchNormGrad ~ @, 696.567 ms [p96.567 ms 13.143ms 53 Outgoin
Pad @ 55.487 ms 55487 MklFusedBatchNorm @, 468.607 ms 68.607 ms 8842ms 53 Outgoin
L2loss @ 47.196 ms 47.196 MilAdd Q 428.265 ms 28 265 ms 26.767 ms 16 Outgoin
ApplyGradientDescent @ 42282 ms 42282 MiIReluGrad Q 354 874ms 354 874ms 7242 ms 49 Outgoin
MaxPool & 21.005 ms 21.005 MilAddN @ 321645ms 321645 ms 1817 ms 177 Outgoin
;"ie"““' “ 4 Thame SRR MiReu & 257.051ms 257.051ms 5246 ms 49 Outgoin
TS 4644 ms s544ms ApplyGradientDescent @, 56.393ms 56.393 ms 0.350 ms 161 Outgoin
Pad aQ 44 343 ms 44 343 ms 44343 ms 1 Outgoin

Benchmarking script:
https://github.com/TensorFlow*/benchmarks/tre
e/master/scripts

Open the json result with
chrome://tracing/ = load

" © 2018 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be 37

claimed as the property of others.

For more complete information about compiler optimizations, see our

(i@ Software

https://software.intel.com/en-us/articles/optimization-notice

Profiling

Integration with Intel VTune Amplifier

Full application analysis
Report types:

= CPU utilization

= Parallelization efficiency

= Memory traffic

Profiling of run-time generated code must
be enabled at compile time

Grouping: Frame Domain / Frame / Function / Call Stack

Frame Domain / Frame / Function / Call Stack a

INST RETIRED.ANY | CPU CLK UNHALTED.THREAD | CPU CLK UNHALTED.REF TSC |

p _INTERNAL_25 src_kmp_bi
» apic_timer_interrupt
| > jit an512_common_conv_fuwd_kerd
p mkidnn:impl::cpu:_jit_avx512_comm

» FW_id011_Convolution_res2b_branch2c
» FW_id012_Split_res2b_res2b_relu_0_sp
'v FW_id013_Pooling_res2b_res2b_relu_0,
vi

» _ kmp_join_barrier

» _INTERNAL_25

» jit_uni_pool_kerel_{32

p ktime_get

p mkidnn::impl::cpu:jit_uni_pooling_fwc

src_kmp_bi

O: 4+ — & 5050ms
£ OMP Master Thread #0 (TID: ... [RIRRIRI
OMP Worker Thread #2 (TID:..
OMP Worker Thread #23 (TI...
FP_ARITH_INST_RETIRED.5...

fent Type

INST_RETIRED.ANY

YTYVTYTVRN I B O B B B N S S S S S S A SO

AAARALE b bbb b hoi b b dok ok oad & ke ke Frame Rate: 144.605

0 0 0

0 0 0
390.000.585| 144,000,216 168,000,252
2,000,003 0 0
1,290,001,935 1,220,001,830 1,342,002,013
54,000,081 458,000,687 450,000,675
54,000,081 458,000,687 450,000,675
0 0 0

0 8,000,012 0
36,000,054 442,000,663 446,000,669
0 0 0
18,000,027 4,000,006

8,000,012

59060ms

Start: 59070.452msDurat
Frame: 1

Frame Domain: FW_id01}
Frame Duration Type: Fa|

$ # building Intel® MKL-DNN using cmake
$ cmake -DVTUNEROOT=/opt/intel/vtune amplifier 2018

. & & make install

$ # an alternative: building Intel® MKL-DNN using sources directly, e.g. in TensorFlow*
$ CFLAGS="-I$VTUNEROOT/include -DJIT_PROFILING_VTUNE" LDFLAGS="-L$VTUNEROOT/1lib64 -1ljitprofiling" bazel build

Intel® MKL-DNN verbose mode overview

Simple yet powerful analysis tool: Output includes:

= The marker, state and primitive kind
= Similar to Intel MKL verbose

Implementation details (e.g. jit:avx2)

= Enabled via environment variable or = Primitive parameters
function call = Creation or execution time (in ms)
= Qutput is in CSV format Example below (details here)

$ # MKLDNN_VERBOSE is unset
$./examples/simple-net-c
passed

$ export MKLDNN_VERBOSE=1 # report only execution parameters and runtime
$./examples/simple-net-c # | grep "mkldnn_verbose"

mkldnn_verbose,exec,reorder, sundef,in:f32 oihw out:f32 Ohwi80,num:1,96x3x11x11,12.2249
mkldnn_verbose,exec,eltwise, ,forward_training,fdata:nChw8c,alg:eltwise relu,mb8ic96ih55iw55,0.437988
mkldnn_verbose,exec,lrn, ,forward_training,fdata:nChw8c,alg:1rn_across_channels,mb8ic96ih55iw55,1.70093
mkldnn_verbose,exec,reorder, sundef,in:¥32 nChw8c out:f32_nchw,num:1,8x96x27x27,0.924805

passed

https://software.intel.com/en-us/articles/verbose-mode-supported-in-intel-mkl-112
https://intel.github.io/mkl-dnn/perf_profile.html

Performance gaps causes

Functional gaps: your hotspot is a commonly/widely used primitive and is not enabled
in Intel® MKL-DNN

Integration gaps: your hotspot uses Intel® MKL-DNN but runs much fasterin a
standalone benchmark (more details in the hands-on session)

Intel® MKL-DNN performance issue: your hotspot uses Intel® MKL-DNN but is very slow
given its parameters

In any of these cases, feel free to contact the Intel® MKL-DNN team through the Github*
page issues section.

*QOther names and brands may be claimed as the property of others intel" I a1

https://github.com/intel/mkl-dnn/issues

